連続的に発生する衝撃波伝播方向の推定

Estimation of Direction in which Continuously-Generated Shock Propagates

○莇 優悟(東電大・院) 松井 裕俊(東電大・院) 遠藤 正樹(東電大) 稲村 栄次郎(産技高専) 平野 利幸(法政大)

Yugo AZAMI, Tokyo Denki University, Ouji, Hatoyama-machi, Hiki-gun, Saitama 350-0394

Hirotoshi MATSUI, Tokyo Denki University, Ishizaka, Ouji, Hatoyama-machi, Hiki-gun, Saitama 350-0394 Masaki ENDO, Tokyo Denki University, Ishizaka, Ouji, Hatoyama-machi, Hiki-gun, Saitama 350-0394

Eijiro INAMURA, Tokyo Metropolitan College of Technology, 1-10-40 Higashi-Ohi, Shinagawa-ku, Tokyo 130-0011

Toshiyuki HIRANO, Hosei University, 3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584

1. 序論

工業上、重要な装置である遠心圧縮機は昇圧の用途に用 いられる. 圧力比の増加には羽根車の回転数を増加させる 必要があるが、回転数を増加させると衝撃波が発生する. そのため、遠心圧縮機の設計において、衝撃波が発生する 流れ場の特性を調査することが重要である. この方法の一 つとして、ロゼット解析により衝撃波の伝ば方向を推定す る手法が挙げられる 1). ロゼット解析は3方向の主応力か ら,最大主ひずみの大きさと方向を求める解析手法である. 単発の衝撃波を発生させて、本解析を用いて衝撃波伝ば方 向の推定を行った実験は過去に例がある.しかし、ターボ 機械の内部流れのように衝撃波が絶え間なく発生する状況 下で、本解析を用いて、衝撃波の伝ぱ方向の推定を行った 実験の例はない. そのため、単発の衝撃波が伝ばする条件 と,連続的に衝撃波が発生する条件とで解析結果に差異が 出るかは不明である. そこで、本研究では数値解析を用い て単発の衝撃波が発生する条件と連続的に衝撃波が発生す る条件とで圧力履歴を取得し、ロゼット解析することで両 条件における衝撃波伝播方向を求め、差異が生じるかを確 認する.

2. 解析対象

本研究では圧力変換機の受圧面を数値解析の対象とした. 受圧面裏面には短軸の半導体ひずみゲージが貼り付けられ ている.受圧面は圧力が作用すると変形し,変形した受圧 面のひずみに応じて,実測値として出力される構造になっ ている.解析対象とした圧力変換器は受圧面直径 *d*=4 mm, 膜の厚さ *h*=0.08 mm である.受圧面の材質は析出硬化系 S ステンレス鋼 SUS630 であり,密度 *p*=7.8×103 kg/m3,縦弾 性係数 *E*=200 GPa, ポアソン比は *v*=0.3 とする.この圧力 変換器を用いて,衝撃波が伝ばしたときの受圧面の変形を 解析する.

3. 解析手法

3.1 数值解析

本研究では有限要素法を用いて、構造解析を行った.図 1 に圧力変換器受圧面の簡易図を示す.圧力変換器の受圧 面の動的な挙動を解析するため、図 1(a)に示した解析モデ ルを考える.衝撃波は図の左から右へ速度 v=400 m/s で移 動する.そこで、受圧面の左端を原点 o として、x, y, z座 標系を設ける.図における点 c は受圧面の中心, r は右端の 点を表す.また、点 c を通り、z 軸に平行な軸を z'とする. 衝撃波の位置は xs で示している.衝撃波通過後の絶対圧力 を p, 大気圧を pa で表し、衝撃波が通過すると受圧面には ゲージ圧 p-pa が作用する.x 方向の分割数 n=66 とし、各領 域は4節点四角形シェル要素と3節点三角形要素を用いた.

Fig. 1 Pressure Transducer

総要素数は 6138 である. 円形の受圧面は衝撃波の伝ば方向 に対して上下対称に変形するため,有限要素モデルは図 1(b)に示すように上半分だけ取り扱う. なお,本数値解析で は図1における受圧面外周に位置する円筒部を剛体と仮定 し,境界条件はx, y, zの3方向において,全て固定とし た.

3.2 ロゼット解析

Fig. 2 Strain Gauge on Diaphragm

図2に示すように衝撃波が圧力変換器の受圧面に向かっ て伝ばし、受圧面に到達すると円形の受圧面は衝撃波の通 過方向に対して上下対称に変形する.そのため、受圧面の 中心を通る上下対称軸上ではせん断変形は生ぜず、その対 称軸はひずみの主軸の一つとなって衝撃波の伝ば方向と一 致する.圧力変換器により取得した圧力履歴は受圧面のひ ずみに相当するので、真の圧力履歴ではなく受圧面の共振 による変動が含まれている.その変動を用いてロゼット解 析を行ない、最大主ひずみの生じる方向を求めることで、 衝撃波の伝ば方向を推定する.本稿では衝撃波の伝ば方向 に対するひずみゲージの向きを角度θとし、衝撃波の伝ば 方向に対して水平な方向をθ=0°とする. 4. 実験結果

単発の衝撃波

4.1

Fig. 4 Histories of Angle

数値解析より取得した、単発の衝撃波が受圧面を伝ばした場合の圧力履歴を図3に示す.縦軸は数値解析において設定したゲージ圧力 $p - p_a$ を大気圧 p_a によって無次元化した値である.横軸は時間である.圧力履歴は受圧面裏面に張られた、ひずみゲージが $\theta = 0^\circ$, 60°, -60°となる三方向で取得した.図中の破線は衝撃波の通過により受圧面に作用するゲージ圧力である.入力の高さはゲージ圧力 $p - p_a = 66.5$ kPa、大気圧 $p_a = 101.3$ kPa より、0.656 である.

図3の衝撃波到達直後の一山分の圧力波形をロゼット解析し、取得した衝撃波伝ば方向の角度履歴を図4に示す. 時間の範囲は0 μ sから28 μ sとした.角度 θ 'は衝撃波通過 直後における、衝撃波の通過方向に対する受圧面の最大主 ひずみが生じる方向のなす角度を示している.ひずみが周 期的に変化するため、最大主ひずみの主軸は衝撃波の伝ぱ 方向に一致するか、あるいは直交することとなる.図4よ り、受圧面の最大主ひずみが生じる方向は衝撃波の通過方 向に対して $\theta' = 0^\circ$, 90°であることがわかる.

4.2 連続的に発生する衝撃波

連続的に衝撃波を 16 回伝はさせた場合における圧力波 形を数値解析より取得し,衝撃波が 6 回通過した時刻まで の波形を図 5 に示す.入力の周期は 230 µs とし,デューティ比は 75%としている.入力の高さは単発の場合と等しく 0.656 である.波形の立ち上がりは図中に示した位置 A, B, C, D, E, F 付近で見られた.それぞれの位置における衝撃 波到達直後の圧力履歴から一山分の波形をロゼット解析し, 衝撃波伝ば方向の角度履歴を図 6 に示した.時間は図中の

Fig. 5 Pressure Histories of Continuously-Generated Shock

Fig. 6 History of Angle (Periodically-Generated Shock)

位置Aにおける衝撃波伝播直後の一山分の圧力波形の時間 に合わせた.角度履歴より,単発の場合の最大主ひずみが 生じる方向 θ' と比較して,差異が最大となるのは $\theta'_B = 60^\circ$, -30° である.また,11回目から16回目の衝撃波通過直後 の波形より θ' を求めたところ,差異が最大となったのは14 回目の衝撃波通過直後の波形における最大主ひずみの方向 $\theta'_{14} = 24^\circ$, -66° であった.よって,連続的に衝撃波通過 すると最大主ひずみの向きは1回目の衝撃波通過直後とそ れ以降の衝撃波通過直後では差異が生じ,衝撃波が通過す るごとに角度 θ' との差異は小さくなると推察される.

5. 結論

数値解析により単発の衝撃波が発生する状況と,入力の 周期を 0.25ms,デューティ比 75%で連続的に衝撃波が 16 回発生する状況で衝撃波通過直後の圧力変動を有限要素法 により求めた.取得した両圧力履歴をロゼット解析するこ とで角度履歴を求めた結果,受圧面上を連続的に衝撃波が 通過すると,受圧面に生じる最大主ひずみの向きは衝撃波 が通過するごとに変化する.また,時間とともに衝撃波が 連続的に通過し続けると,単発の場合における最大主ひず みが生じる方向θ'との差異は小さくなると推察される.

参考文献

 (1) 遠藤正樹,稲村栄次郎,衝撃波の伝播方向の推定法に ついて,計測自動制御学会論文集,Vol.54, No.6, pp.564-573, (2018)